已知向量a=(cosθ,sinθ)向量b=(√3,-1)则 |2a-b|的最大值最小值分别是?
人气:347 ℃ 时间:2019-08-20 19:54:22
解答
a²=cos²θ+sin²θ=1 b²=3+1=4 ab=√3cosθ-sinθ|2a-b|²=4a²+b²-4ab=4+4-4(√3cosθ-sinθ)=8-8(√3/2cosθ-1/2sinθ)=8+8sin(θ-π/3)最大值为8+8=16,最小值为8-8=0所以|2a-b|...
推荐
- 已知向量a=(cosξ,sinξ),向量b=(根号三,-1),求|2a-b|最大值与最小值.
- 已知向量a=(cosθ,sinθ),θ属于[0,兀],向量b=(根号3,-1),求|2a-b|的最大值和最小值
- 已知向量a=(cosθ,sinθ),向量b=(3,−1),则|2a−b|的最大值,最小值分别是 _ .
- 已知向量a=(cosθ,sinθ),向量b=(3,0),则|2a-b|的最大值和最小值分别是
- 已知向量a=(cosα,sinα),向量b=(根号三,-1)则|2a-b|的最大最小值为
- you shouldn't be late to class again 改错
- 化简[(ab+1)(ab-1)-2a^2b^2+1]/ab
- he asked his daughter what she wanted him to dring for her
猜你喜欢