已知向量a=(cos(3x/2),sin(3x/2)),b=(cos(x/2),-sin(x/2)),且x∈[0,π/2]
(1)求向量a乘以向量b
(2)求|a+b|;
(3)求函数f(x)=a*b-|a+b|的最小值及此时的x值.
人气:348 ℃ 时间:2019-12-13 18:14:58
解答
(1) a.b=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)=cos(2x)(2) |a+b|=√{[cos(3x/2)+cos(x/2)]^2+[sin(3x/2)-sin(x/2)]^2}=√[2+2cos(3x/2)cos(x/2)-2sin(3x/2)sin(x/2)]=√[2+2cos(2x)]=2cos(x)(3) f(x)=cos(2x)-2cos(x...为什么=√[2+2cos(2x)]=2cos(x)用倍角公式 cos(2x)=2[cos(x)]^2-1,代入即得。
推荐
- 已知向量a=[cos(3x/2),sin(3x/2)],b=[cos(x/2),-sin(x/2),]且x∈[0,π/2]
- 已知向量a=(cos(3x/2),sin(3x/2)),向量b=(cos(x/2),-sin(x/2))且x∈[0,π/2],则|向量a+向量b|=
- 已知向量a=[cos(3x/2),sin(3x/2)],b=[sin(x/2),-cos(x/2)],且x=[0,π/2]
- 已知向量a=[cos(3x/2),sin(3x/2)],已知向量b=[cos(x/2),-sin(x/2)],x属于[0,兀/3]
- 已知向量a=[cos(3x/2),sin(3x/2)],向量b=[cos(x/2),-sin(x/2)],且x[0,π/2]
- 一环形线圈放在匀强磁场中,设第1s内磁感线垂直线圈平面(即垂直于纸面)向里,如图甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么第3s内线圈中感应电流的大小与其各处所受
- 英译中I dont know why i told this to you today,but hope you will not let any person eles knows
- 若|a^n|=½,|b|^n=3,求(ab)^2n的值
猜你喜欢