设f(x)=ax∧3+bx∧2+cx在x=x0处取得极小值-8,其导函数y=f '(x)的图像经过点(-2,0),(2/3 ,0)
(2)若对X∈[-3 ,3]都有f(x)≥m∧2-14m恒成立,求实数m的取值范围?
函数开口向下 = = 原函数算出来是这个f(x)=-x∧3-2x∧2+4x
人气:407 ℃ 时间:2019-09-24 05:09:30
解答
f'(x)=3ax²+2bx+c
so
12a-4b+c=0
4a/3+4b/3+c=0
解得
b=2a,c=-4a
f'(x)=3ax²+4ax+-4a=a(x+2)(2x-3)
f(x)=ax^3+2ax²-4ax
f(-2)=-8a+8a+8a=8a=-8
a=-1
f(x)=-x^3-2x²+4x
X∈[-3 ,3]
f(-3)=27-18-12=-3
f(3)=-27-18+12=-33
f(2/3)=40/27
在[-3,3],f(x)min=-33,f(x)max=40/27
对X∈[-3 ,3]都有f(x)≥m∧2-14m恒成立
m²-14m≤-33
m²-14m+33≤0
3≤m≤11
推荐
- 函数f(x)=ax3+bx2+cx在点x0处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求: (1)x0的值; (2)a,b,c的值; (3)f(x)的极大值.
- 设f(x)=ax^3+bx^2+cx的极小值为-8,其导函数y=f`(x)的图像经过点(-2,0)和点(2//3,0),如图所示
- 函数f(x)=ax3+bx2+cx在点x0处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求: (1)x0的值; (2)a,b,c的值; (3)f(x)的极大值.
- 设f(x)=ax^3+bx^2+cx的极小值为-8,其导函数y=f'(x)的图像经过点(-2,0) (2/3,0) ,求解析式
- f(x)=ax^3+bx^2+cx在点x0处取得极小值-4其导函数的图象过点(-1,0)(1,0)求x0,a,b,c值
- 单项选择()Tony,please go to the store after you finish——lunch.
- 我市今年冬天很冷用英语怎么说
- 在直角坐标平面内y轴右侧的一动点P到点(1/2,0)的距离比它到y轴的距离大1/2.
猜你喜欢