设f(x)=ax^3+bx^2+cx的极小值为-8,其导函数y=f`(x)的图像经过点(-2,0)和点(2//3,0),如图所示
(1)求f(x)的解析式
(2)若对x∈[-3,3]都有f(x)≥m^2-14m恒成立,求实数m的取值范围
(图为:图像的开口向下,图像与x轴交与-2,2/3两点,图像交y轴上方.)
人气:425 ℃ 时间:2019-08-20 08:11:39
解答
f'(x)=3ax^2+2bx+c,由条件知3a(-2)^2+2b(-2)+c=0,3a(2/3)^2+2b(2/3)+c=0,另外,导函数在(负无穷,-2)和(2/3,+无穷)上0,因此f(x)先递减后递增又递减,-2是极小值点,于是a(-2)^3+b(-2)^2+c(-2)=-8.三个方程解出a=-1,b...
推荐
- 设函数f(x)=ax^3+bx^2+cx+d,(a,b,c,d∈R)的图像关于原点对称,且当x=1时f(x)有极小值-2/3
- 设f(x)=ax∧3+bx∧2+cx在x=x0处取得极小值-8,其导函数y=f '(x)的图像经过点(-2,0),(2/3 ,0)
- 如图所示的曲线是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于 _ .
- 函数f(x)=ax3+bx2+cx在点x0处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求: (1)x0的值; (2)a,b,c的值; (3)f(x)的极大值.
- 设f(x)=ax^3+bx^2+cx的极小值为-8,其导函数y=f'(x)的图像经过点(-2,0) (2/3,0) ,求解析式
- what do plants need to get water?
- ( )You go______Long Street and______left.You can find the supermarket.
- 说明文的描写和记叙文的描写有什么不同?
猜你喜欢