已知二次函数f(x)=x²+mx+1(m属于Z),且关于x的方程f(x)=2在区间(-3,1/2)内有两个不同的实根.
(1)求f(x)的解析式 ;
(2)若x属于【1,t】(t>1)时,总有f(x-4)≤4x成立,求t的最大值.
人气:135 ℃ 时间:2020-04-29 17:50:13
解答
1、x²+mx+1=2 x²+mx-1=0 根为[-m±√(m²+4)]/2,即-3<[-m+√(m²+4)]/2<0.½,-3<[-m-√(m²+4)]/2,<½.解得3/2<m<8/3,m为整数,则m=2.所求解析式为y=x²+2x+1
2、f(x-4)≤4x 即(x-3)²-4x≤0 1≤x≤9
所以t最大值9
推荐
- 已知二次函数f(x)=x²+mx+1(m属于Z),且关于x的方程f(x)=2在区间(-3,1/2)内有两个不同的实根.(1
- 已知二次函数f(x)=x²+mx+1(m属于Z),且关于x的方程f(x)=2在区间(-3,1/2)内有两个不同的实根.
- 已知二次函数f(x)=ax^2+x+c,满足f(1)=0,且关于x的方程f(x)+2x-a=0的两个实数根分别在区间(-3,-2)和(0,1)内,求实数a的取值范围?
- 已知二次函数f(x)=ax2+bx+c,f(1)≠f(3),证明方程f(x)=1/2[f(1)+f(3)]必有个实数根属于区间(1,3)
- 已知二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),且方程f(x)-3a/4=0有两个相等的实根. (1)求函数f(x)的解析式; (2)当x∈[t,t+1](t∈R)时,求函数f(x)的最小值g(t)的表达式.
- 我是中国人民的儿子,我深情地爱着我的祖国这是什么意思
- 所有的强电解质和弱电解质
- 在玻片上有一字母pqbd,则在显微镜视野中看到的图像是( ),
猜你喜欢