> 数学 >
已知函数 f(x)的定义域为R,且对任意 x∈Z,都有 f(x)=f(x-1)+f(x+1).若f(-1)=6,f(1)=7,则 f(2012)+f(-2012)=______.
人气:156 ℃ 时间:2019-09-26 15:40:04
解答
因为f(x)=f(x-1)+f(x+1)
所以f(x+1)=f(x)+f(x+2)
两式相加得0=f(x-1)+f(x+2)
即:f(x+3)=-f(x)
∴f(x+6)=f(x)
f(x)是以6为周期的周期函数
2012=6×335+2,-2012=-6×335-2
∴f(2012)=f(2)=-f(-1)=-6
f(-2012)=f(-2)=-f(1)=-7
∴f(2012)+f(-2012)=-13
故答案为-13
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版