我认为问题出在n的取值范围上
an+1=Sn-n+3,此时n的取值范围是n≥1
an=Sn-1-n+4此时n的取值范围是n≥2
所以两者必须先统一n的范围才能够相减
所以应该为2an-1=an+1(n≥2)
故不能将n=1代入上式.
2an-1=an+1(n≥2)
即(an+1-1)-2(an-1)=0
令an-1=bn
则bn+1-2bn=0
(bn+1)/bn=2
故bn是等比数列
b1=a1-1=1
所以bn=2^(n-1)
所以an=bn+1=2^(n-1)+1(n≥2)
这时才能将n=1代入检验
a1=1+1=2,符合上式
所以an=2^(n-1)+1