高一上期末数学考试解题疑问:10,对于函数f(x)=cosx+sinx,给出下列四个命题:
1)存在a∈(0,π/2),使f(a)=4/3;
2)存在a∈(0,π/2),使f(x+a)=f(x+3a) 3) 存在φ∈R,使函数f(x+φ)的图像关于y轴对称
4)函数f(x)的图像关于点(3π/4,0)对称
其中正确命题的个数是
A 1 B 2 C 3 D 4
1.f(x)=cosx+sinx=√2sin(x+π/4),
当x∈(0,π/2)时,(x+π/4) ∈(π/4,3π/4),
所以sin(x+π/4) ∈(√2/2,1),f(x)∈(1,√2),
而4/3∈(1,√2),所以第一个命题成立.
2.f(x+α)=f(x+3α),说明函数的周期是2α,
而f(x)=cosx+sinx=√2sin(x+π/4)的最小正周期是2π,
则2α=2π,α=π.π不属于(0,π/2).
所以第二个命题不成立.
3.θ=π/4时,f(x+θ)= √2sin(x+π/4+π/4)= √2sin(x+π/2) =√2cosx是偶函数,偶函数的图像关于y轴对称.
所以存在θ=π/4,使函数f(x+θ)的图象关于y轴对称,该命题成立.
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,所以图象关于点(3π/4,0)对称,该命题成立
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,为什么x=3π/4时,f(3π/4)=0就说明图像关于点(3π/4,0)对称,能说明点(3π/4,0)在图像上呀?
人气:142 ℃ 时间:2020-01-27 16:00:10
解答
函数关于一个点(a,b)对称的充要条件是1、定义域关于a对称,即对于每一个定义域内的x1总有唯一一个x2,使x1+x2=2a2、对于定义域内任意的x1,x2(x1+x2=2a)有f(x1)+f(x2)=2b满足以上两个条件,则函数f(x)关于点(a,b)对...
推荐
猜你喜欢
- 如何求x的x次方的不定积分?
- 冬天的晚上,熄灯后,我们脱毛衣时常常看到有火星四射,这是由于
- Tom often asks his father ------ monry.
- 一块铁板长3米 宽1.6米 厚度8毫米,球该铁板质量(kg)
- 土豆经酒精灯加热先变黑再变灰说明土豆中含有什么?
- 身,口,工,火,寸,八,弋,火,加个偏旁是什么字
- 导致英国工业革命产生的直接原因是?
- 钯碳催化剂的使用和注意事项