用放缩法证明√(x^2+xy+y^2)+√(y^2+yz+z^2)+√(z^2+zx+x^2)>=(3/2)(x+y+z)
人气:181 ℃ 时间:2019-10-23 16:33:18
解答
√(x^2+xy+y^2)+√(y^2+yz+z^2)+√(z^2+zx+x^2)
>=√(1/4*x^2+xy+y^2)+√(1/4*y^2+yz+z^2)+√(1/4*z^2+zx+x^2)
=√(1/2*x+y)^2+√(1/2*y+z)^2+√(1/2*z+x)^2
=1/2*x+y+1/2*y+z+1/2*z+x
=(3/2)(x+y+z)
推荐
- 设x,y,z≥0,x+y+z=3,证明:√x+√y+√z≥xy+yz+zx
- 证明 (x+y+z)^2>3(xy+yz+zx)
- y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a-b+c)(a-b-c)=10
- 证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).
- 若x-3=y-2=z-1,求x的平方+y的平方++z的平方-xy-yz-zx的值
- 设M(x,y)为椭圆x2+y2/4=1上的动点,求x+2y的最大值和最小值
- (x+300)*2=3x-300
- 已知:商店中某个玩具的进价为40元,标价为60元.问①若按标价出售这个玩具,则所得的利
猜你喜欢