已知抛物线x2=4y的焦点为F,A.B是曲线上两动点,且向量AF=λ向量FB(λ>0).过A.B两点分别做抛物线的切线.设其交点为M
1)若同时点P满足PA=λPB,求点P的纵坐标
注意是求点P的坐标!不是点M!不要复制
人气:320 ℃ 时间:2019-11-08 10:41:05
解答
抛物线x^2=4y①的焦点为F(0,1),
A.B是曲线上两动点,且向量AF=λ向量FB(λ>0).
∴设B(4t,4t^2),则AF=λFB=λ(4t,4t^2-1),
向量OA=OF-AF=(0,1)-λ(4t,4t^2-1)=(-4λt,1+λ-4λt^2),即A(-4λt,1+λ-4λt^2),
设P(x,y),由PA=λPB得
(-4λt-x,1+λ-4λt^2-y)=λ(4t-x,4t^2-y),
∴-4λt-x=4λt-λx,1+λ-4λt^2-y=4λt^2-λy,
∴x=8λt/(λ-1),y=(8λt^2-1-λ)/(λ-1),为所求.求不出定值吗?条件不足.
推荐
- 已知抛物线x2=4y的焦点为F,A.B是曲线上两动点,且向量AF=λ向量FB(λ>0).过A.B两点分别做抛物线的切线.设其交点为M
- 抛物线x平方=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=a向量FB(a>0)过A、B两点分别作抛物线的切线,设其交点为M.1)证明向量FM*向量AB为定值.2)设三角形ABM的面积为S,写出S=f(a)的表达式,并求S的最小值
- 在平面直角坐标系xOy中,已知焦点为F的抛物线x^2=4y上有两个动点A,B,且向量AF=λ向量FB,
- 已知抛物线x^2=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=λ向量FB(λ>0).过AB两点分别作作抛物线的切线,设其交点为M.
- 设抛物线x2=4y的焦点为F,经过点P(1,4)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点, 则|AF|+|BF|=_.
- 求海子《春天》赏析
- 古诗《江南》诗人是谁?
- 一段路程,客车要行4小时,货车要行5小时,客车速度比货车速度( ) A.快20% B.快25% C.慢20% D.慢25%
猜你喜欢