已知函数f(x)是R上的增函数,a,b∈R,证明:若f(a)+f(b)>f(-a)+f(-b),则a+b>0.
人气:463 ℃ 时间:2020-03-26 08:41:29
解答
先证原命题的逆否命题:
“若a+b≤0,则f(a)+f(b)≤f(-a)+f(-b)”为真.
证:a+b≤0⇒a≤-b,b≤-a
⇒f(a)≤f(-b),f(b)≤f(-a)
⇒f(a)+f(b)≤f(-b)+f(-a).
故原命题:若f(a)+f(b)>f(-a)+f(-b),则a+b>0也为真.
推荐
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 设函数f(x)=|lgx|,若b>a>0,且f(a)>f(b),证明:ab
- 已知f(x)为偶函数,他在区间【ab】上为减函数,(0
- 已知f(x)是定义域在R上的函数,其图像关于y轴对称,且在[a,b](ab>0)上是增函数,证明y=f(x)在[-b,-a]上是减函数.
- 证明函数f(x)=x^3+3在r上是增函数 急
- 杜甫最有名的诗句都有什么
- 1.甲乙丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲丙抢答,以后在抢答过程中若甲答对一题就可提六个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对
- 二十四点11 7 10 8
猜你喜欢