空间四边形ABCD中,AC=BD=a,E F分别是AD 、BC中点,EF=√2/2a,∠BDC=90°,求证:BD⊥平面ACD
人气:153 ℃ 时间:2019-08-19 14:27:47
解答
您好:这个也很简单的.证明如下:取AB的中点G,因为E、F分别是AD、BC的中点,由初中的三角形中位线定理,得EG=(1/2)BD=(1/2)a,FG=(1/2)AC=(1/2)a,所以根据余弦定理或勾股定理等容易得到∠EGF=90度.即EG⊥FG.又因为AC//F...
推荐
- 在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=22a,∠BDC=90°.求证:BD⊥平面ACD.
- 四面体ABCD中,AC=BD,E,F分别为AD,BC的中点,且EF=22AC,∠BDC=90°,求证:BD⊥平面ACD.
- 在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=22a,∠BDC=90°.求证:BD⊥平面ACD.
- 四面体ABCD中,AC=BD,E,F分别为AD,BC的中点,且EF=(√2)/2AC,角BDC=90°求证BD垂直平面ACD.求做此题的图
- 在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=22a,∠BDC=90°.求证:BD⊥平面ACD.
- 已知函数f(x)=1+sin2x,g(x)=(√2)sin(x+π/4),x∈[-π/2,π/2]
- 两个数的和是527,其中一个加数的个位0,若把0去掉,则与另一个数相同,求这两个数.
- 缓冲溶液PH的计算方法
猜你喜欢