设A是数域P上的n阶矩阵,数a为A的n重特征值,如果A在P上相似于对角矩阵,证明A=aE为数量矩阵
人气:229 ℃ 时间:2020-03-25 22:24:35
解答
由于A可对角化,故A的最小多项式无重根(这是个定理)
又由于a为A的n重特征根,故A有n个初等因子,都为λ-a
故A的若当标准型为diag(a,a,...,a)
故存在可逆矩阵P使得P^(-1)AP=diag(a,a,...,a)=aE(此也为定理)
故A=PaEP^(-1)=aE
证毕
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果