试说明,如果一个偶函数y=f(x)的图象关于直线x=a对称,则必为周期函数
人气:328 ℃ 时间:2019-10-26 15:21:15
解答
f(x)的图象关于直线x=a对称(应有a≠0),
则f(2a-x)=f(x),
用-x代换上式中的x得
f(2a+x)=f(-x),
因为y=f(x)是偶函数,
f(-x)=f(x),
所以f(2a+x)=f(x),
即f(x)是周期为2a的周期函数.
推荐
- 若f(x)是定义在R上的偶函数,其图像关于直线x=a对称,则f(x)是周期函数,且它的一个周期是?
- 已知定义在R上的偶函数f(x)满足f(x)图象关于点(1,0)对称,则f(x)是周期函数,它的一个周期是
- 若f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为多少的周期函数
- 若f(x)是偶函数,且图象关于点(a,0)对称,证明4a是f(x)的周期
- 若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于( ) A.直线x=-1对称 B.直线x=1对称 C.直线x=12对称 D.直线x=−12对称
- 社会主义现代化建设取得巨大成就,如:,取得这些成就的根本原因是 .
- 欧亨利的 最后一片叶子
- three out of是什么意思?
猜你喜欢