> 数学 >
数列 极限:证明lim n/(n次根号下(n!))=e
人气:451 ℃ 时间:2019-12-10 18:25:04
解答
设xn=n^n/n!
lim x(n+1)/xn=lim (1+1/n)^n *(n)/(n+1)=e*1=e
那么 lim n次根号下(xn)=lim xn=e
又lim n次根号下(xn)=lim n次根号下(n^n/n!)=lim n/(n次根号下(n!))
故lim n/(n次根号下(n!))=e
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版