> 数学 >
证明‘‘u(t)=∫(0,丌)ln(t²+2t cosx+1)dx ” 为偶函数
人气:493 ℃ 时间:2019-09-22 09:43:37
解答
因为cosx=-cos(丌-x)
u(-t)=∫(0,丌)ln(t²-2t cosx+1)dx
=∫(0,丌)ln(t²+2t cos(丌-x)+1)dx
=∫(0,丌)ln(t²+2t cos(x)+1)dx
=u(t)
所以u(t)为偶函数.有这么简单解?恩,哪一布有疑问吗?u(-t)=∫(0,丌)ln(t²-2t cosx+1)dx=∫(0,丌)ln(t²+2t cos(丌-x)+1)dx //换元,考虑p=丌-x,dp=-dx=∫(丌,0)ln(t²+2t cosp+1)(-dp)=∫(0,丌)ln(t²+2t cos(p)+1)dp //又换回来 p=x=∫(0,丌)ln(t²+2t cos(x)+1)dx=u(t)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版