>
数学
>
设a,b,c为互不相等的非零实数,求证:方程ax
2
+2bx+c=0,bx
2
+2cx+a=0,cx
2
+2ax+b=0不可能都有两个相等的实数根.
人气:490 ℃ 时间:2019-08-20 22:47:01
解答
证明:假设题中的三个方程都有两个相等的实数根,不妨设这三个方程的根的判别式为△
1
,△
2
,△
3
,
则有
△
1
=4
b
2
−4ac=0 ①
△
2
=4
c
2
−4ab=0 ②
△
3
=4
a
2
−4bc=0 ③
.
由①+②+③得:a
2
+b
2
+c
2
-ab-ac-bc=0,
有2a
2
+2b
2
+2c
2
-2ab-2ac-2bc=0,
即(a-b)
2
+(b-c)
2
+(c-a)
2
=0,
∴a=b=c,这与已知a,b,c为互不相等的非零实数矛盾,
故题中的三个方程不可能都有两个相等的实数根.
推荐
已知a、b、c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
设a,b,c为互不相等的非零实数,求证:方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0不可能都有两个相等的实数根.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成( ) A.三个方程都没有两个相异实根 B.一个方程没有
设a,b,c为互不相等的非零实数,求证:方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0不可能都有两个相等的实数根.
1.a,b,c为非零实数,且ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0试问:a,b,c满足什么条件时,三个二次方程中至少有一个方程有不等的实数根?
解关于x的不等式ax~2-(a+1)x+1
现在的黄赤交角是多少啊?
亲情作文题目
猜你喜欢
作文(生活是一道风景)
六倍体普通小麦体细胞中有六个染色体组,它的单倍体中怎么会有3个染色体组?
76.We should help _________(home) people.
几个英语词义的辨析
公司常用语的英语翻译
(2009山东高考)设函数f(χ)=cos(2χ+π/3)+sin²χ.(1)求函数f(χ)的最大值和
等腰梯形ABCD中,AD‖BC,∠ABC=45°,AC,BD相交于点O,∠BOC=120°,求AD:BC
2012年1月28日星期几·日历
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版