数列{bn}满足b1=S1=4,n≥2时,bn=Sn-Sn-1=2n+1.所以,数列{bn}的通项公式为bn=
|
(Ⅱ)由(Ⅰ)知cn=anbn=
|
Tn=4+5•3+7•32+…+(2n+1)•3n-1∴3Tn=12+5•32+7•33+9•34+…+(2n+1)•3n,(8分)
两式相减得−2Tn=7+2(32+33+34++3n−1)−(2n+1)•3n=7+2
9(3n−2−1) |
3−1 |
所以Tn=n•3n+1,(n≥2),
综上,数列{cn}的前n项和Tn=n•3n+1,(n∈N+).(12分)