在三角形ABC中,三边分别为(m+n),(m-n)he 2mn',其中m,n都为正整数,且m>n,试判断三角形是不是直角三角形
在三角形ABC中,三边分别为(m^2+n)^2,(m^2-n^2) 和2mn',其中m,n都为正整数,且m>n,试判断三角形是不是直角三角形
人气:280 ℃ 时间:2019-08-21 13:17:07
解答
(m²+n²)²=(m²)²+(n²)²+2m²n²
(m²-n²)²=(m²)²+(n²)²-2m²n²
(2mn)²=4m²n²
∴(m²+n²)²=(m²-n²)²+(2mn)²
∴是直角三角形
推荐
猜你喜欢
- he was able to walk when he was 10 months old
- 荣誉权究竟属不属于人格权
- 先化简,再求值:(1)2x2-5x x2 4x,其中x=-3 (2)(3x2-xy-2y2)-2(x2 xy-2y2),其中x=6,y=-1
- not in make the a classroom mess do怎么连
- 电子与电荷有什么区别?
- 什么叫农耕文化,什么叫农业文化
- 一个六位数,最高位上数的数是2,百位上的数是最高位上的数的4倍,个位和十位上的数比百位上的数大,其余数位上是0.这个数写作( ).
- give him a cookbook,please.请改为否定句!