椭圆焦点F1(-3,0)F2(3,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|等差中项,求椭圆方程
人气:163 ℃ 时间:2019-08-21 21:37:03
解答
由题意得
c=3 |F1F2|=6
|F1F2|是|PF1|与|PF2|等差中项
所以|PF1|+|PF2|=2a=12
a=6 b²=27
椭圆方程为x²/36+y²/27=1
推荐
- 已知椭圆的焦点是F1(-1,0),F2(1,0),p为椭圆上一点,且|F1F2|是|pF1|和|pF2|的等差中项.求椭圆的方程.
- 已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项. (1)求此椭圆方程; (2)若点P满足∠F1PF2=120°,求△PF1F2的面积.
- 已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项. (1)求此椭圆方程; (2)若点P满足∠F1PF2=120°,求△PF1F2的面积.
- 已知椭圆的焦点是F1(0,-1)、F2(0,1),P是椭圆上一点,并且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的方程是_.
- 椭圆的两个焦点是F1(-1,0),F2(1,0),P为椭圆上一点,切|F1F2|是|PF1|与|PF2|的等差中项,椭圆方程为
- 化简:sin(a+5π)cos(-π/2-a)·cos(8π-a)/sin(a-3π)·sin(-a-4π)
- 物理的判断题
- What is her name?(写出缩略形式)
猜你喜欢