> 数学 >
在三角形ABC中,a,b,c分别是角A,B,C的对边,设f(x)=a^2x^2-(a^2-b^2)x-4c^2
(x属于N*),且f(2)=0,求角C的取值范围.
人气:105 ℃ 时间:2019-12-07 17:21:01
解答
f(x)=a^2x^2-(a^2-b^2)x-4c^2,
(x属于N*),且f(2)=0,
f(2)=a^2*2^2-(a^2-b^2*2-4c^2=0,
a^2+b^2=2c^2,
而,cosC=(a^2+b^2-c^2)/2ab=(2c^2-c^2)/2ab=c^2/2ab,
又因为:c^2=(a^2+b^2)/2≥2ab/2=ab,
即有,c^2≥ab.
cosC=c^2/2ab≥ab/2ab=1/2=cos60,
而,cosC为减函数,则有
0即,角C的取值范围是:0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版