三角形ABC中 D为AC上一点 CD=2DA 角BAC=60度 CE垂直BD E为垂足 连接AE 求三角形BEC与三角形BEA的面积之比
人气:199 ℃ 时间:2019-08-18 14:58:23
解答
作AF⊥BD(直线BD),垂足为F
因为CE⊥BD
所以AD//CE
所以△CDE∽△ADF
所以CE/AF=CD/AD=2/1
所以S△CDE/S△ABE=(BE*CE/2)/(BE*AF/2)
=CE/AF=2/1
60度的条件多余,题目是否有误?
推荐
- 三角形ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.求△BEC与△BEA的面积之
- 已知三角形ABC中,角BAC等于90度,AB等于AC,AE是过点A的直线BD垂直AE于点E,求证BD等于CE加DE
- 已知:△ABC中,∠BAC=90°,AB=AC,AE为过点A的一条直线,且点B,C在AE的异侧BD⊥AE于点D,CE⊥AE于点E.
- 点D、E在三角形ABC的边BC上,AB=AC,AD=AE,求证,BD=CE
- 如图,三角形ABC中∠B=60°AD,CE分别是∠BAC,∠ACB的角平分线.E点在AB上,D点在BC上在.求证AE+CD=AC.
- 两数和为3,积为-10 求这两个数
- 用英语简单描写你的房间
- 以我的卧室写一篇英语作文
猜你喜欢