> 数学 >
已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化
人气:481 ℃ 时间:2020-04-11 23:24:41
解答
[证明] (方法一:构造法)见下图\x0d



\x0d[证明] (方法二:利用特征值与特征向量)见下图\x0d



\x0d[证明] (方法三:利用极小多项式) \x0d因为A满足A2 + 2A-3E = O,即(A-E)(A +3E) = O,\x0d所以A的极小多项式没有重根,\x0d(事实上,A的极小多项式是(x-1)(x+3)的因子) \x0d故A相似于对角矩阵D,其对角线上的元素只能为1或-3.\x0d[参考文献] 张小向,陈建龙,线性代数学习指导,科学出版社,2008.\x0d周建华,陈建龙,张小向,几何与代数,科学出版社,2009.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版