已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2×a3=45,a1+a4=14
(1)求an通项公式
(2)通过bn=Sn/n+c,构造一个新的数列{bn},是否存在一个非实零数c,使{bn}也为等差数列
(3)求f[n]=bn/(n+25)b(n+1)的最大值
人气:432 ℃ 时间:2019-12-01 12:48:03
解答
1、由a2×a3=45,a1+a4=14得:{(a1+d)(a1+2d)=45 a1+a1+3d=14解之得a1=13 d=-4(舍去) 或a1=1 d=4故{an}是以1为首项,公差为4的等差数列an=1+(n-1)*4=4n-32、Sn=(1+4n-3)*n/2=n(2n-1)故:bn=Sn/(n+c)=[n(2n-1)]/(n+c)...
推荐
- 已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2*a3=45,a1+a4=14
- 已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2·a3=45,a1+a4=14
- 已知公差大于零的等差数列{an}的前n项为Sn,且满足a3*a4=117,a2+a5=22.
- 已知公差大于零的等差数列{an}的前n项和Sn,且满足a3*a4=117,a2+a5=22
- 已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3*a4=117,a2+a5=22
- 描写艺术方面的成语
- 欧阳修苦读 阅读答案
- 帕科说:“累死我了,但我很开心,因为我仍中了好几块木炭,白衬衫上有几个黑印子了.”改为转述句
猜你喜欢