泰勒级数的展开问题
我只知道f(x)在x0处展开
今天在参考书上看见个f(0)在x处展开的
原题如下:
设f(x)在[0,a]二次可导且f(0)=0,f"(x)0,即xf'(x)-f(x)
人气:159 ℃ 时间:2020-06-14 13:49:47
解答
只要函数f(x)在点x处有高阶导数,比如这里的二阶
那么就可以在这点展开
f(y)=f(x)+f'(x)(y-x)+0.5f''(x+t(y-x))(y-x)^2
其中t是介于0,1之间的数,那么x+t(y-x)是介于x,y之间的数
让y=0即可知道把函数在0点的值用在x点展开的式子表示
只要存在高阶导数就可以展开,楼主找找数学书应该会看到的,0点只是特例
推荐
猜你喜欢
- 马克思主义的根本特性是( )
- 《石壕吏》中最能体现出当时兵役之苛酷,战争之惨烈的句子是哪句?
- 4x-2.4+0.6=1.4 解方程
- 求ln y的3次方等于多少
- 质量可以转化为能量,宇宙会不会变成空空的
- 在三角形ABC中,D,E分别为AB,AC中点,延长DE大奥F,使EF=DE,连接CF,若AB=12,BC=10,求四边形BCFD的周长.
- The greatest talkers are always least doers
- 下列说法正确的是( )