∴OA=OC,OB=OD(1分)
可得点p的坐标为P(3,4)(3分)
∴k=12,即双曲线的解析式为y=
| 12 |
| x |
解法二:
由勾股定理可求得菱形的边长为5,所以求得点C、点D的坐标C(3,0)、D(0,4),
所以点P坐标为P(3,4),下同解(一);
(2)依题意:联立
|
解得
|
即P(4,3)(7分)
此时,OA=OD=3、OB=OC=4,△OAD,△OBC为等腰直角三角形,
∴AD∥BC,(9分)
又据勾股定理求得AB=CD=5.
所以四边形ABCD为等腰梯形(10分)
| k |
| x |
意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.| 3 |
| 4 |
| 12 |
| x |
|
|