设对任意的x,y,恒有f(x+y)=e^yf(x)+e^xf(y) 其中函数f可导 且在0点倒数为2 求f(x)
人气:401 ℃ 时间:2020-04-24 08:03:21
解答
两边同时除以e^(x+y)得f(x+y)/e^(x+y)=f(x)/e^x+f(y)/e^y所以令f(x)/e^x=g(x),上式变成g(x+y)=g(x)+g(y).容易知道g(0)=0题目已知f'(0)=2.又f'(x)=(g(x)+g'(x))e^x,故得g(0)+g'(0)=2,g'(0)=2g'(x)=lim(g(t+x)-g(x))/t...
推荐
- 设f(x)是定义在R上的函数,且对任何x,y∈R,都有f(x+y)=e^xf(y)+e^yf(x).若f'(0)=e,求f(x)
- 已知定义在实数集上的函数f(X),不恒为0,且对任意x.y属于R,满足xf(Y)=yf(X),判断f(X)的奇偶性
- 已知函数f(x)可导,且对任何实数x,y满足:f(x+y)=e^xf(y)+e^yf(x)和f'(0)=e 证明:f'(x)=f(x)+e^(x+1)
- 诺y=f(x)[0+无穷]上是增函数,f(xy)=xf(y)+yf(x),且满足f(x)+f(x-1/2)
- 设函数f(x)对一切实数x,y满足f(xy)=xf(y)+yf(x)-xy且|f(x)-x|≤1,求函数f(x).
- 甲乙丙三支球队进行比赛,共赛三场,结果是:甲攻进球数为5个;乙攻进球数为3个;被攻进球数也为3个;丙攻进球数为2个,被攻进球数为5个.比赛结果无平局出现.已知甲丙比赛时,两队都进了球,那么,这场比赛甲丙两队进球个数分别是多少
- 若3x+5>2,2x-3a<1有解,并且解集在-1<x<2的范围内求a的取值范围
- "一花一世界,一叶一如来" 如来怎么理解?
猜你喜欢