已知向量a=(cosx/2,tan(x/2+π/4)),向量b=(√2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=ab
求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间
人气:238 ℃ 时间:2019-12-12 23:13:40
解答
f(x)=2cosx/2×(√2sin(x/2+π/4)+ tan(x/2+π/4)×tan(x/2-π/4)) =√2[sin(x+π/4)+sin(π/4)] + [1+tan(x/2)]/[1-tan(x/2)]×[tan(x/2)-1]/[1+tan(x/2)] =√2sin(x+π/4) 最大值=√2最小正周期=2πsinx的增区...
推荐
- 已知向量→a=(2cosx/2,tan(x/2+π/4)),→b=(√2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=→a·→b.是否存在实数x∈[0,π],使f(x)+f'(x)=0若存在,则求出x的值;若不存在,则证
- 已知向量a=(2cosx/2,tan(x/2+π/4)),b=(√2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=向量a*向量b ,求f(x)的值域,最小正周期
- 已知向量a=(2cosx/2,tan(x/2+π/4)),b=(√2sin(x/2+π/4),tan(x/2-π/4))
- 已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),
- 已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4))令fx
- 43.5除25等于几
- 一块长方形玻璃长1米20厘米,宽80厘米,每平方米售价16.5元,这块玻璃应售价多少元?
- 如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.当∠B的度数变化时,试讨论 ∠DCE如何变化?说明你的根据.
猜你喜欢