已知O为坐标原点,A(cosα,sinα),α∈R,|OB向量|=2,MN向量=(1-t)OA向量—OB向量,t∈R,当|向量MN|取得最小值时t=t0,t∈(1,2),求向量OA与向量OB的夹角θ的取值范围
人气:176 ℃ 时间:2019-10-23 06:17:15
解答
已知O为坐标原点,A(cosα,sinα),α∈R,|OB向量|=2,MN向量=(1-t)OA向量—OB向量,t∈R,当|向量MN|取得最小值时t=t0,t∈(1,2),求向量OA与向量OB的夹角θ的取值范围
OA=(cosα,sinα),故︱OA︱=1;∵︱OB︱=2,故可设OB=(2cosβ,2sinβ);
MN=(1-t)OA-OB=((1-t)cosα-2cosβ,(1-t)sinα-2sinβ)
︱MN︱=√{[(1-t)cosα-2cosβ]²+[(1-t)sinα-2sinβ)]²}
=√[(1-t)²(cos²α+sin²α)-4(1-t)(cosαcosβ+sinαsinβ)+4(cos²β+sin²β)]
=√[(1-t)²-4(1-t)cos(α-β)+4]=√{[(1-t)-2cos(α-β)]²-4cos²(α-β)+4}≧√[4(1-cos²(α-β)]=2︱sin(α-β)︱
当1-t=2cos(α-β),即t=1-2cos(α-β)=to时︱MN︱获得最小值2︱sin(α-β)︱.
OA与OB的夹角为θ,则cosθ=(OA•OB)/[︱OA︱︱OB︱]=(2cosαcosβ+2sinαsinβ)/2=cos(α-β)
=(1-t)/2,1
推荐
- 已知向量OA=(λsinα,λcosα),OB=(cosβ,sinβ),且α+β=5π/6,其中O为原点,
- 已知向量OA=(cosα,sinα),向量OB=( -sin(α+π/6),cos(α+π/6)),其中o为原点,
- 已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐标原点.
- 已知向量OA=(λcosa,λsina)(λ≠0)向量OB=(-sinβ,cosβ),其中O为坐标原点
- 已知向量OA=(2cosα,2sinα),向量OB=(-sinβ,cosβ),其中O为坐标原点,若β=α-π/6,则|向量AB|=
- 预初英语题目 We are going to live in a new flat next mo
- 仓库里有一批货物,运出3/5后,有运进20吨,这时仓库里的货物正好是原来的1/2,仓库里原来有货物多少吨.
- sinx×lnx.x趋于零时极限怎么算
猜你喜欢