已知数列{an}中,a1=1,a2=2,an=1/3a(n-1)+2/3a(n-2),(n≥3),求数列{an}的通项公式
人气:370 ℃ 时间:2019-10-11 00:22:34
解答
方法一 变an=1/3a(n-1)+2/3a(n-2)为an-a(n-1)=-2/3(a(n-1)-a(n-2))从而{an-a(n-1)}(n>=2)为等比数列 这样做下去.
方法二 写成该二阶递归数列的特征方程t^2=1/3t+2/3 显然有两解t1 t2 从而数列的通项可以表示成an=C1t1^(n-1)+C2t2^(n-1) 根据a1 a2 待定解出C1 C2 从而通项出来了.
推荐
- 已知数列{an}中,a1=5,a2=2,an=2a(n-1)+3a(n-2)(n≥3)能否写出它的通项公式
- 已知数列an中,a1=5,a2=2,an=2a(n-1)+3a(n-2)(n>=3),求这个数列的通项公式
- 已知数列{an}满足a1=1,且an=1/3a(n-1)+(1/3)^n (n≥2,且n∈N+),则数列{an}的通项公式为
- 数列an满足a1=2,3a(n+1)+an-7=0,求数列an的通项公式
- 数列an满足a1=2,a2=5,a(n+2)=3a(n+1)-2an,求数列{an}的通项公式
- 正方形纸片绕它的一条边旋转一周形成的几何体是圆柱体,这说明
- 5又3分之2时=()时()分 5千克50克=()千克=()克
- 给老人们讲故事,使他们开心英文翻译
猜你喜欢