若x=0,则f(x)=0,
若x≠0时,f(x)=
2x |
x2+1 |
2 | ||
x+
|
若x>0,x+
1 |
x |
x•
|
2 | ||
x+
|
若x<0,则x+
1 |
x |
(−x)•
|
2 | ||
x+
|
综上-1≤f(x)≤1,即函数的值域为[-1,1].
f(-x)=
−2x |
x2+1 |
函数的导数为f′(x)=
2−2x2 |
(x2+1)2 |
由f′(x)>0解得 2-2x2>0,即x2<1,解得-1<x<1,此时函数单调递增.
由f′(x)<0解得 2-2x2<0,即x2>1,解得x>1或x<-1,此时函数单调递减.
2x |
x2+1 |
2x |
x2+1 |
2 | ||
x+
|
1 |
x |
x•
|
2 | ||
x+
|
1 |
x |
(−x)•
|
2 | ||
x+
|
−2x |
x2+1 |
2−2x2 |
(x2+1)2 |