> 数学 >
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.

(1)求证:△ADE≌△BCE;
(2)求∠AFB的度数.
人气:256 ℃ 时间:2019-08-19 10:05:28
解答
(1)证明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等边三角形
∴CE=DE,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2) ∵△CDE是等边三角形,
∴CE=CD=DE,
∵四边形ABCD是正方形
∴CD=BC,
∴CE=BC,
∴△CBE为等腰三角形,且顶角∠ECB=90°-60°=30°
∴∠EBC=
1
2
(180°-30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版