以y=C1 e^x+C2 x e^(-x)为通解的微分方程
y''-2y'+y=0
人气:304 ℃ 时间:2020-04-24 20:16:55
解答
y=C₁e^x+C₂ x e^(-x)为通解的微分方程
y′=C₁e^x+C₂e^(-x)-C₂xe^(-x)
y′′=C₁e^x-C₂e^(-x)-C₂e^(-x)+C₂xe^(-x)=C₁e^x-2C₂e^(-x)+C₂xe^(-x),故得:
y′′-2y′+y=[C₁e^x-2C₂e^(-x)+C₂xe^(-x)]-2[C₁e^x+C₂e^(-x)-C₂xe^(-x)]+[C₁e^x+C₂ x e^(-x)]
=[2C₁e^x-2C₁e^x]-[2C₂e^(-x)-2C₂e^(-x)]+[2C₂xe^(-x)-2C₂xe^(-x)]=0
即原微分方程为y′′-2y′+y=0
推荐
- 求一个微分方程,使其通解为(x-C1)2+(y-C2)2=1
- 以y=C1·(e的x次方)+C2·(e的-2x)为通解的微分方程是
- 求未知通解y'=c1*e^(c2)的微分方程
- 微分方程2yy''=(y')^2的通解是()A.(x-C)^2;B.C1(x-1)^2+C2(x-1)^2;C.C1+(x-C2)^2;D.C1(x-C2)^2
- 问(x-C1)2+(y-C2)2=1是哪个微分方程的隐式通解,其中C1,C2为任意常数
- 如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E.已知AB=10,BC=8,AC=6,求△AED的周长
- 如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A.右转80° B.左转80° C.右转100° D.左转100°
- 运用辨证唯物论知识说明,中国人的航天梦想能逐步实现的原因.
猜你喜欢