cosC |
cosB |
2a−c |
b |
a |
sinA |
b |
sinB |
c |
sinC |
2a−c |
b |
2sinA−sinC |
sinB |
∴
cosC |
cosB |
2sinA−sinC |
sinB |
∴sinBcosC=2sinAcosB-sinCcosB,
∴sin(B+C)=2sinAcosB,又在△ABC,B+C=π-A,
∴sin(B+C)=sinA≠0,
∴cosB=
1 |
2 |
∴B=
π |
3 |
故答案为:
π |
3 |
cosC |
cosB |
2a−c |
b |
cosC |
cosB |
2a−c |
b |
a |
sinA |
b |
sinB |
c |
sinC |
2a−c |
b |
2sinA−sinC |
sinB |
cosC |
cosB |
2sinA−sinC |
sinB |
1 |
2 |
π |
3 |
π |
3 |