| cosC |
| cosB |
| 2a−c |
| b |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| 2a−c |
| b |
| 2sinA−sinC |
| sinB |
∴
| cosC |
| cosB |
| 2sinA−sinC |
| sinB |
∴sinBcosC=2sinAcosB-sinCcosB,
∴sin(B+C)=2sinAcosB,又在△ABC,B+C=π-A,
∴sin(B+C)=sinA≠0,
∴cosB=
| 1 |
| 2 |
∴B=
| π |
| 3 |
故答案为:
| π |
| 3 |
| cosC |
| cosB |
| 2a−c |
| b |
| cosC |
| cosB |
| 2a−c |
| b |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| 2a−c |
| b |
| 2sinA−sinC |
| sinB |
| cosC |
| cosB |
| 2sinA−sinC |
| sinB |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |