设f(x)在x=a处可导,f'(x)=b 求极限lim(h-0) f(a-h)-f(a+2h)/ h
RT
人气:223 ℃ 时间:2019-08-17 21:42:34
解答
lim [h→0] [f(a-h)-f(a+2h)]/h=lim [h→0] [f(a-h)-f(a)+f(a)-f(a+2h)]/h=lim [h→0] [f(a-h)-f(a)]/h + lim [h→0] [f(a)-f(a+2h)]/h=-lim [h→0] [f(a-h)-f(a)]/(-h) - 2lim [h→0] [f(a+2h)-f(a)]/(2h)=-f '(a)-...
推荐
- f(a)的导数存在且为1,求极限lim [f(a+2h)-f(a)]/h 求解过程,谢谢!
- 设f(x)在x=3点可导,则lim{[f(3-h)-f(3)]/2h}=? h →0
- f(x)在点x.处可导,△f(x.)=f(x.+△x)-f(x.),则极限lim(△x→0)[△f(x.)-df(x.)...
- 这道极限题:Lim h→0 [f(a+3h)-f(a-h)]/2h怎么做啊?
- 设f(x)为可导函数,且lim(h→0) f(3)-f(3+h)/2h=5,则f'(3)等于?
- 三角形中,若(a+b)^2-c^2=3ab ,则角C=?
- 2道题用方程解,30分,急!
- I spend half an hour _(watch) TV every night.
猜你喜欢