图】过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x^2+y^2=a^2/4的切线,切点为E
延长FE交曲线右支于点P,若向量OE=1/2(向量OF+向量OP),则双曲线的离心率为?
您先自己画个图吧那样看起来比较容易
设→焦点为F'(c,0),连接PF'
∵向量OE=1/2(向量OF+向量OP)
∴OE垂直平分FP
∴OF=OP
∵OF=OF'
∴OF=OP=OF'
∴△PFF'为直角三角形即FP⊥F'P
∵OE⊥PF
∴F'P=2OE=a
∴FP=F'P+2a=3a
∴在直角三角形PFF'中,PF^2+PF'^2=FF'^2
∴(3a)^2+a^2=(2c)^2
∴e=根号10/2
∴OE垂直平分FP
∴OF=OP
∵OF=OF'
∴OF=OP=OF'
∴△PFF'为直角三角形
直角三角形怎么得出的?
斜边中线等于斜边一半
我想问下OE为什么垂直PF
人气:231 ℃ 时间:2019-08-22 19:03:18
解答
因为E是切点.半径垂直于切线.平分呢?因为向量OE=1/2(向量OF+向量OP)所以,1/2向量OE-1/2向量OF=1/2向量OP-1/2向量OE,所以,向量EF=向量PE,得证
推荐
- 过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x^2+y^2=a^2/4的切线,切点为E
- 过双曲线x^2/a^-y^2/b^2=1(a>0b>0)的左焦点F1(-c,0)作圆x^2+y^2=a^2/4的切线 切点为E
- 过双曲线x2a2-y2b2=1 (a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为 _ .
- 过双曲线x^2/a^2-y^2/b^2=1的左焦点作圆x^2+y^2=a^2/4的切线,切点为E,延长FE交双曲线右支于点P,若向量OE=1/2(向量OF+向量OP),则双曲线的离心率是_
- 过双曲线C:x2a2-y2b2=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为_.
- 篇末“人比黄花瘦”一句运用了_______和_______的修辞手法.
- 2X平方-3X-1=0
- using this machine,a search party tried to find gold.using是动名词吗?
猜你喜欢
- 已知序列函数fn(x)在[a,b]上一致收敛于极限函数f,且fn(x) 在[a,b]上有界.g(x)是在R上的连续函数,求证 g(fn(x))一致收敛于g(f(x))
- 钱塘湖春行中,描绘西湖美景的诗句是
- 古代汉语中被动句的概念
- 6千米的四分之三=几千米的六分之一
- ______!The baby is sleeping
- 籍长八尺余,力能扛鼎,才气过人,虽吴中子弟,皆已惮籍矣.
- 如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PA的长.
- 六一班人数在40到50之间,男生人数比女生人数多5分之2.男.女生各多少人