如图,设G是AC的中点,连接EG、GF,∴EG∥BC、GF∥AD(三角形的中位线平行于第三边的一半),
∵EG与BC在同一平面上,EG∥BC,
∴∠GEF的大小就等于EF与BC所成的角的大小.
又∵三棱锥A-BCD是棱长都相等的正三棱锥,所以BC⊥AD,
∵EG∥BC、GF∥AD,∴∠EGF=90°,
EG=BC/2;GF=
| AD |
| 2 |
又∵BC=AD(棱长都相等),∴EG=GF,
∴△EGF是等腰直角三角形,
∴∠GEF=45°,
∴EF与BC所成的角为45°.
故选B.
A. 30°
如图,设G是AC的中点,连接EG、GF,| AD |
| 2 |