A(3,0),B(0,3),C(cosa,sina),若|OA向量+OC向量|=√13,a属于(0,π),求OB向量与OC向量的夹角
人气:296 ℃ 时间:2019-09-29 06:33:31
解答
|OA向量+OC向量|^2
=(3+cosa)^2+(sina)^2
=9+6cosa+cos^2a+sin^2a
=10+6cosa
=13
即:cosa=1/2且a属于(0,π),所以sina=√3/2
|OB|=3,|OC|=1
OBOC=|OB||OC|cosx
cosx=(3sina)/3=√3/2
所以此夹角为30度!
推荐
- 向量OA=(cosa,sina)向量OB=(2cosb,2sinb),向量OC=(0,d)
- 已知A(3,0),B(0,3),C(cosa,sina).(1)若(2向量OA-向量OB)⊥向量OC,求cos2a;
- 设A(cosa,sina)、B(cos(2派/3 +a),sin(2派/3 +a))、C(cos(4派/3 +a),sin(4派/3 +a)),求证向量OA+OB+OC=0.
- 已知A(3.0)B(0.3) C(cosa.sina) O为坐标原点丨向量OA-向量OC丨=根号13 0<a<π 求向量OB与OC的夹角
- 已知A(3,0),B(0,3),C(cosa,sina),若|OA+OC|=根号13,且a∈(0,π),求OB与OC的夹角
- 社会主义现代化建设取得巨大成就,如:,取得这些成就的根本原因是 .
- 欧亨利的 最后一片叶子
- three out of是什么意思?
猜你喜欢