设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3
(1).求证:f(x)是周期函数
(2).当x∈[2,4]时,求f(x)的解析式
(3).求f(0)+f(1)+f(2)+...+f(2011)的值
错了错了,是当x∈[0,2]时,f(x)=2x-x^3
人气:418 ℃ 时间:2019-08-19 15:13:09
解答
因为 f(x+2)=-f(x),所以 f(x+4) = -f(x+2)
所以 f(x) = f(x+4)
则f(x) 的周期为4.
x∈[-2,0] 时,-x∈[0,2],
则f(-x)=2(-x)-(-x)^2=-2x- x^2,
因为f(x)是奇函数,
所以f(x)=-f(-x)=-[ -2x- x^2]= 2x+x^2 (x∈[-2,0] 时).
当x∈[2,4]时,x-4∈[-2,0],
所以f(x-4)=2(x-4)+(x-4)^2
因为f(x) 的周期为4,
所以f(x)=f(x-4)= 2(x-4)+(x-4)^2
=x^2-6x+8(x∈[2,4]时).
当x∈[0,2]时,f(x)=2x-x^2
当x∈[2,4]时,f(x)= =x^2-6x+8
所以f(0)=0,f(1)=1,f(2)=0,f(3)=-1.
f(0)+f(1)+f(2)+f(3)=0.
因为f(x) 的周期为4,
所以f(0)+f(1)+f(2)+……+f(2012)
= [f(0)+f(1)+f(2)+f(3)]+[ f(4)+f(5)+f(6)+f(7)]+……+[ f(2008)+f(2009)+f(2010)+f(2011)]+ f(2012)
=0+0+……+0+ f(2012)
= f(0)
=0.题错了,现在改好了
推荐
- 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x^2
- 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)
- 设f(x)是定义域R上的奇函数,且对任意实数x,恒有f(x+2)=
- 设fx是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-fx,当x属
- 设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(x+2)=-f(x),当x属于[-2,0]时,f(x)=2x+x^2
- 根据下面三视图,请判断共需多少个小正方体
- 阿斯旺大坝的不利影响主要表现在几个方面
- 用英语说明听音乐对人的好处.
猜你喜欢
- 用mathematica求解如下二阶微分方程的数值解 输出最终的数值解并画图
- 如果幂函数f(x)=xa的图象经过点(2,22),则f(4)=_.
- 计算(5分之2x的立方-7x的平方+3分之2x)除以3分之2的结果是()
- 用u,e,r,t,t,b,l,f,y,组成一个单词
- 关于x的方程1/x-3+k/x+3=3+k/x²-9,则k的取值范围是k>0或k<-1,且k≠3 .
- 帮我化简两个三角函数式子,..
- 两个数之和为445,大数除以小数等于4,余数为45,请问这两个数是多少?
- 形容五官美的语句