1 |
x |
1 |
(x−1)2 |
故函数f(x)在区间(0,1),及(1,+∞)都是单调递增的,
再根据 f(
1 |
e2 |
1 | ||
|
e2 |
e2−1 |
(e2−1)+1 |
e2−1 |
1 |
e2−1 |
1 |
e |
e |
e−1 |
(e−1)+1 |
e−1 |
1 |
e−1 |
可得 f(
1 |
e2 |
1 |
e |
1 |
e2 |
1 |
e |
再由 f(2)=ln2-1<0,f(3)=ln3-
1 |
2 |
故选 C.
1 |
x−1 |
1 |
x |
1 |
(x−1)2 |
1 |
e2 |
1 | ||
|
e2 |
e2−1 |
(e2−1)+1 |
e2−1 |
1 |
e2−1 |
1 |
e |
e |
e−1 |
(e−1)+1 |
e−1 |
1 |
e−1 |
1 |
e2 |
1 |
e |
1 |
e2 |
1 |
e |
1 |
2 |