实数数列{an}相邻两项an,an+1是方程x^2-Bn+(1/3)^n=0的两根,且a1=2 1)证明an+2/an为定值2)求{an}的通项
3)求B1+B2+B3+……+Bn+……无穷项之和
人气:269 ℃ 时间:2019-08-20 22:06:58
解答
(1)由韦达定理可得:
a(n)a(n+1)=(1/3)^n
a(n+1)a(n+2)=(1/3)^(n+1)
下式÷上式得:
a(n+2)/a(n)=1/3=定值;
(2)取n=1,则a(1)a(2)=1/3,a(2)=1/6,
所以,可得:
a(2n-1)=2×(1/3)^(n-1),
a(2n)=(1/6)×(1/3)^(n-1);
(3)B(n)=a(n)+a(n+1)
当n=2k,则
B(2k)=(1/6)×(1/3)^(k-1)+2×(1/3)^k
=(5/6)×(1/3)^(k-1);
当n=2k-1,则
B(2k-1)=2×(1/3)^(k-1)+(1/6)×(1/3)^(k-1)
=(13/6)×(1/3)^(k-1);
所以
S=13/6+5/6+(13/6)×(1/3)+(5/6)×(1/3)+(13/6)×(1/3)^2+(5/6)×(1/3)^2+…+(13/6)×(1/3)^(k-1)+(5/6)×(1/3)^(k-1)+…
=(13/6+5/6)/(1-1/3)
=3÷(2/3)
=9/2
(第三不是很肯定.,请检验)
推荐
- 在数列{an}中,a1=1,an+1=2an+2n; (1)设bn=an2n−1.证明:数列{bn}是等差数列; (2)求数列{an}的通项公式.
- 已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N.〈1〉令bn=an+1-an,证明:{bn}是等比数列:求{an...
- 已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其中x为实数,n为...
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
- 如图,把一张等边三角形ABC的纸片沿DE折叠,使点A落在BC边上点F处,若D、E分别在边AB、BC
- 在直角坐标系中,△ABC的顶点A、B的坐标分别为(-1,-2),(3,-2),顶点C在直线y=x+2上移动
- 氧化铜能与氢氧化钠反应吗?
猜你喜欢
- 班级明天举办辩论会求帮助
- 假如给我三天光明读后感,要短,就56十个字就行,就像二三年级写的,要有人物精神
- 每过一分钟,时钟的分针转过的角度是多少,
- 一批货物,按4:5分给甲、乙两个车队来运,乙队共运95吨,甲队共运多少吨?
- 中和热指什么呢?
- do it yourself 翻译
- 张明从学校图书馆借到了2007年1-12期 读者 合订本一册,准备在一个月内归还,请写一个借条.急要
- 以五边形每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积