设两个一元二次方程ax2+2bx+1=0和cx2+2dx+1=0(其中a,b,c,d均为实数)满足a+c=2bd.求证:上述两个方程中至少有一个方程有实数根.
人气:146 ℃ 时间:2019-09-18 05:09:29
解答
假设上述两个方程中都没有实数根.
则两个方程的判别式△1=4b2-4a<0,△2=4d2-4c<0,
即b2<a,d2<c,不等式两边同时相加得b2+d2<a+c,
∵a+c=2bd.
∴不等式等价为b2+d2<2bd,
这与b2+d2≥2bd矛盾,
故假设不成立,
即上述两个方程中至少有一个方程有实数根.
推荐
猜你喜欢
- 为什么解微分方程的时候1/X的积分是lnX+C?
- 小学五年级数学难题, 数学高手过来帮忙急````
- That is more nonsense
- 40,12,37,39,45,18,10,26,91,69,234,76,600这些数中合数有哪些
- __is not certain where we will go tomorrow
- 关于家庭成员的不同习惯的英语作文
- 一台电脑原价500元,再降价五分之一,再涨价五分之一,现价多少元?
- 一道关于概率的数学题,