已知函数f(x)=1/2x^2-lnx 若g(x)=-2/3x^3+X^2.证明当X>1时,函数f(x)的图像恒在g(x)的上方.
人气:430 ℃ 时间:2019-09-09 18:28:26
解答
分析,要证明f(x)的图像恒在g(x)的上方,
即是证明,当x>1时,f(x)>g(x)
即是证明,1/2*x²-lnx>-2/3*x³+x²
即是证明,2/3*x³-1/2*x²-lnx>0.
证明:
设t(x)=2/3*x³-1/2*x²-lnx
t'=2x²-x-1/x
=(2x³-x²-1)/x
=(x-1)(2x²+x+1)/x
当x>1时,x-1>0,2x²+x+1>0
∴t'>0
∴t在(1,+∞)上增函数,
因此,t(x)>t(1)=2/3-1/2=1/6>0
∴2/3*x³-1/2*x²-lnx>0
即是,1/2*x²-lnx>-2/3*x³+x²
因此,当X>1时,函数f(x)的图像恒在g(x)的上方.
推荐
- 已知函数f(x)=1/2x∧2-alnx,求函数f(x)的单调区间,求证当x>1时,1/2x∧2+lnx
- 已知函数f(x)=lnx+2x,g(x)=a(x2+x),若f(x)≤g(x)恒成立,则实数a的取值范围是_.
- f(x)=1/2x²+lnx 求证:在x≥1时,f(x)的图像在函数g(x)=2/3x^3的下方
- 证明:函数f(x)=lnx+3x+1的零点有且只有一个.
- 求证:在区间(1,+无穷)上,函数f(x)=1/2x^2+lnx的图像总在函数g(x)=2/3x^3的下方
- 《傲慢与偏见》的英文梗概 100~300字
- 植物油和氢氧化钠的比例是多少?
- 在-3,-1,0,2 四个数中,最大的数是大神们帮帮忙
猜你喜欢