> 数学 >
已知三棱锥S-ABC的所有顶点都在球O的球面上,SC为球O的直径,且SC⊥OA,SC⊥OB,△OAB为等边三角形,三棱锥S-ABC的体积为
4
3
3
,则球O的半径为(  )
A. 3
B. 1
C. 2
D. 4
人气:175 ℃ 时间:2020-05-05 14:38:40
解答
根据题意作出图形:
设球心为O,球的半径r.
∵SC⊥OA,SC⊥OB,∴SC⊥平面AOB,
三棱锥S-ABC的体积可看成是两个小三棱锥S-ABO和C-ABO的体积和.
∴V三棱锥S-ABC=V三棱锥S-ABO+V三棱锥C-ABO=
1
3
×
3
4
×r2×r×2=
4
3
3

∴r=2.
故选C.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版