设函数f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a),a>0.试证明在(-a,a)内至少存在一点m,使得f...
设函数f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a),a>0.试证明在(-a,a)内至少存在一点m,使得f(m)的导数=2mf(m).
人气:439 ℃ 时间:2020-06-20 06:52:34
解答
设 g(x)=f(x)*e^(-x^2)
则g(a)=g(-a)
于是存在(-a,a)内一点m,使得
g'(m)=0,计算g‘(m) 即得:
f'(m)=2mf(m).
推荐
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 已知函数f(x)在(0,1)上连续,在(0,1)内可导,并且f(1)=0,证明:在(0,1)内至少存在一点m,使f'(m)=-2f(m)/m
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
- 设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得
- 1.polite(反义词)2.swim(现在分词)
- 化简((cos20°/sin20°)cos10°)+根号3(sin10°tan70°)-2cos40°
- 英语翻译
猜你喜欢