lim{[3sinx+(x^2)*cos(1/x)]/[(1+cosx)ln(1+x)]}(x趋近于0)
人气:193 ℃ 时间:2019-09-09 18:02:59
解答
原式=lim[3sinx+(x^2)cos(1/x)/2x]
=lim[3sinx/2x+xcos(1/x)/2]
=3/2+0=3/2
其中当x趋近于0时,1+cosx趋近于2;ln(1+x)和x等价无穷小;cos(1/x)为有界函数,所以xcos(1/x)/2=0;lim(sinx/x)=1
推荐
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋