已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,若双曲线焦...
已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,若双曲线焦距为2根号34,求椭圆和双曲线的方程
人气:187 ℃ 时间:2019-12-09 15:28:12
解答
c/a=4/5 设双曲线方程x^2/a^2-y^2/b^2=1
椭圆方程x^2/a^2+y^2/b^2=1
c(双曲线)=根号34 a^2+b^2=c(双曲线)^2
c^2=4 解出 a^2=25 b^2=9 双曲线方程为x^2/25-y^2/9=1 椭圆方程为x^2/25+y^2/9=1
推荐
- 已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,以椭圆的长轴为实轴,短轴为虚轴的双曲线的焦距为2√34
- 中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1.F2,且|F1F2|=6√13 ,椭圆的长半轴与双曲线
- 已知有公共焦点的椭圆与双曲线中心在原点.
- 已知有公共焦点的椭圆和双曲线中心在原点,焦点在X轴,左右焦点分别为F1F2,且它们在第一象限的焦点为P.三角形PF1F2是以PF1为底的等腰三角形,若PF1的长是10.双曲线的离心率的取值范围(1,2).则该椭圆的离心率的取值范围是多少?
- 如图,椭圆中心在坐标原点,F为左焦点,当FB⊥AB时,其离心率为5−12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于_.
- 在正方形ABCD中,M为BC上一点,AN平分∠DAM交DC于点N,若BM=1,DN=2,则AB=( )
- information 是可数名词还是不可数名词
- 已知作用于同一点的两个力F1和F2,大小分别为F1=20N,F2=30N,两个力的夹角为60度
猜你喜欢