急设函数f(x)=a·(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),x∈R
⑴求函数f(x)的最大值和最小正周期;
⑵将函数y=f(x)的图象怎样平移后的到的图像关于坐标原点成中心对称?
人气:496 ℃ 时间:2019-12-15 04:04:43
解答
先计算向量b+c=(sinx-cosx,sinx-3cosx)
再求得f(x)=sinx(sinx-cosx)-cosx(sinx-3cosx)
=(sinx)^2-2sinxcosx+3(cosx)^2=1-sin2x+1+cos2x
=2-(√2)sin(2x-π/4)
⑴当sin(2x-π/4)=-1时,f(x)有最大值2+√2.最小正周期T=2π2=π.
⑵图像关于坐标原点成中心对称,即相应的函数为奇函数,
将f(x)的图像向左平移π/8个单位,再向下平移2个单位,得函数y=-(√2)sin2x的图像,它关于原点对称.
推荐
- 设函数f(x)=a•(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),x∈R. (Ⅰ)求函数f(x)的最大值和最小正周期; (Ⅱ)将函数f(x)的图象按向量d平移,使平移后得到的
- 设函数f(x)=向量a*(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx)
- 已知向量a=(5根号3cosx,cosx)b=(sinx,2cosx),函数f(x)=ab+b^2,求F(X)最小正周期
- 设函数f(X)=a*(b+c).其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),X属于R.(1)求函数f(x)
- 设函数f(x)=a*(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),x∈R.
- 小学三年级--有余数的除法
- 计算减法时,把减数十位上的8看成5,个位上的3看成了2,结果是309,正确的结果是多少
- 在平面直角坐标系中,直线y=-二分之一x+1与x轴、y轴分别交于点A、B点,若点C(1,2),点D在坐标平面内,如果以A、B、C、D为顶点的四边形,求D坐标
猜你喜欢