设函数f(x)=(x+1)ln(x+1)-ax在x=0处取得极值.
(1)求a的值及函数f(x)的单调区间;
(2)证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1).
人气:478 ℃ 时间:2019-09-03 11:44:05
解答
(1)∵f(x)=(x+1)ln(x+1)-ax,∴f'(x)=ln(x+1)+1-a,∵f(x)在x=0处取得极值,∴f'(0)=0,∴a=1,故f'(x)=ln(x+1),当x+1>1,即x>0时,f'(x)>0,当0<x+1<1,即-1<x<0时,f'(x)<0,∴f...
推荐
- 设函数f(x)=ax-(a+1)ln(x+1),其中a>0,当x>0时,证明不等式x/(x+1)
- 1求函数y=x-ln(1+x)在定义域内的极值 2证明不等式:当X>0时,x>ln(1+x)
- 已知函数f(x)=ln(ax+1)+x²-ax(a>0) (1)若x=1/2是函数f(x)的一个极值点 求a (2)讨论函数f(x)的单
- 已知函数f(x)=ln(1/2+1/2ax)+x^2-ax.(a为常数,a>0) (1)若x=1/2是函数f(x)的一个极值点,求a的值
- 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢