线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵
人气:201 ℃ 时间:2019-10-26 20:17:52
解答
因为n阶方阵A为正交矩阵,
故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.
A^-1=A*/IAI
A*=IAIA^-1=IAIA'
故(A*)'A*=(IAIA')'IAIA'
=IAIA IAIA'
=IAI^2 AA'
=IAI^2 E
=1*E
=E
所以A*为正交矩阵.
推荐
- 线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.
- 线性代数中怎么证明正交矩阵的特征值是1或者-1?
- 证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”
- 线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0
- 线性代数问题 A和B 是正交矩阵,是证明A*B也是正交矩阵.
- 设矩阵A=(2 2 1,3 1 5,3 2 3),求A的负一次方
- 已知a,b是方程x-4x+m=0的两个根,b,c是方程x-8x+5m=0的两个根,则m的值为?
- 3(x+4)=9x+6的解
猜你喜欢